Back to Search Start Over

OPTIMIZATION OF THE COOLING OF A THERMOPLASTIC INJECTION MOLD.

Authors :
Chaabene, A.
Chatti, S.
Slama, M. Ben
Source :
Annals of "Dunarea de Jos" University of Galati, Fascicle XII, Welding Equipment & Technology. 2021, Vol. 32, p61-70. 10p.
Publication Year :
2021

Abstract

In injection molding processes for thermoplastic parts, the polymer solidification phase in the molding cavity has a strong influence on the quality of the shaped parts and also on the process cycle time. Reducing cycle time is one of the major concerns for plastic injection industries. As cooling phase presents the most critical phase to get quality and cycle time of the part, the application of additive manufacturing (AM) technologies has been overcoming the limitations of traditional cooling system design. AM enables the construction of conformal cooling channels for higher cooling uniformity due to its almost unlimited freedom of design that can fulfil the desired functions in injection molding process equipment. The analysis of the heat transfer during the phase of cooling allows the investigation of the optimal positioning of the cold sources and their intensities. In this paper, a systematic approach is used to replace conventional channels in an injection molding tool with conformal cooling channels. A simulation is used to develop a numerical model that describes the heat transfer and predicts the cycle time of both the optimal and conventional designs. Finally, a numerical comparison is made between traditional and conformal cooling to demonstrate the beneficial effect on reducing the manufacturing cycle and enhancing part quality. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
12214639
Volume :
32
Database :
Academic Search Index
Journal :
Annals of "Dunarea de Jos" University of Galati, Fascicle XII, Welding Equipment & Technology
Publication Type :
Academic Journal
Accession number :
154752409
Full Text :
https://doi.org/10.35219/awet.2021.08