Back to Search Start Over

Cross-condition and cross-platform remaining useful life estimation via adversarial-based domain adaptation.

Authors :
Zhao, Dongdong
Liu, Feng
Source :
Scientific Reports. 1/18/2022, Vol. 12 Issue 1, p1-13. 13p.
Publication Year :
2022

Abstract

Supervised machine learning is a traditionally remaining useful life (RUL) estimation tool, which requires a lot of prior knowledge. For the situation lacking labeled data, supervised methods are invalid for the issue of domain shift in data distribution. In this paper, a adversarial-based domain adaptation (ADA) architecture with convolution neural networks (CNN) for RUL estimation of bearings under different conditions and platforms, referred to as ADACNN, is proposed. Specifically, ADACNN is trained in source labeled data and fine-tunes to similar target unlabeled data via an adversarial training and parameters shared mechanism. Besides a feature extractor and source domain regressive predictor, ADACNN also includes a domain classifier that tries to guide feature extractor find some domain-invariant features, which differents with traditional methods and belongs to a unsupervised learning in target domain, which has potential application value and far-reaching significance in academia. In addition, according to different first predictive time (FPT) detection mechanisms, we also explores the impact of different FPT detection mechanisms on RUL estimation performance. Finally, according to extensive experiments, the results of RUL estimation of bearing in cross-condition and cross-platform prove that ADACNN architecture has satisfactory generalization performance and great practical value in industry. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20452322
Volume :
12
Issue :
1
Database :
Academic Search Index
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
154738526
Full Text :
https://doi.org/10.1038/s41598-021-03835-2