Back to Search
Start Over
THE BOCHNER–SCHOENBERG-EBERLEIN PROPERTY OF EXTENSIONS OF BANACH ALGEBRAS AND BANACH MODULES.
- Source :
-
Bulletin of the Australian Mathematical Society . Feb2022, Vol. 105 Issue 1, p134-145. 12p. - Publication Year :
- 2022
-
Abstract
- Let A be a Banach algebra and let X be a Banach A-bimodule. We consider the Banach algebra ${A\oplus _1 X}$ , where A is a commutative Banach algebra. We investigate the Bochner–Schoenberg–Eberlein (BSE) property and the BSE module property on $A\oplus _1 X$. We show that the module extension Banach algebra $A\oplus _1 X$ is a BSE Banach algebra if and only if A is a BSE Banach algebra and $X=\{0\}$. Furthermore, we consider $A\oplus _1 X$ as a Banach $A\oplus _1 X$ -module and characterise the BSE module property on $A\oplus _1 X$. We show that $A\oplus _1 X$ is a BSE Banach $A\oplus _1 X$ -module if and only if A and X are BSE Banach A-modules. [ABSTRACT FROM AUTHOR]
- Subjects :
- *BANACH algebras
*MODULES (Algebra)
*VECTOR fields
*COMPACT groups
Subjects
Details
- Language :
- English
- ISSN :
- 00049727
- Volume :
- 105
- Issue :
- 1
- Database :
- Academic Search Index
- Journal :
- Bulletin of the Australian Mathematical Society
- Publication Type :
- Academic Journal
- Accession number :
- 154711608
- Full Text :
- https://doi.org/10.1017/S0004972721000502