Back to Search Start Over

THE BOCHNER–SCHOENBERG-EBERLEIN PROPERTY OF EXTENSIONS OF BANACH ALGEBRAS AND BANACH MODULES.

Authors :
ALIZADEH, NASRIN
EBADIAN, ALI
OSTADBASHI, SAEID
JABBARI, ALI
Source :
Bulletin of the Australian Mathematical Society. Feb2022, Vol. 105 Issue 1, p134-145. 12p.
Publication Year :
2022

Abstract

Let A be a Banach algebra and let X be a Banach A-bimodule. We consider the Banach algebra ${A\oplus _1 X}$ , where A is a commutative Banach algebra. We investigate the Bochner–Schoenberg–Eberlein (BSE) property and the BSE module property on $A\oplus _1 X$. We show that the module extension Banach algebra $A\oplus _1 X$ is a BSE Banach algebra if and only if A is a BSE Banach algebra and $X=\{0\}$. Furthermore, we consider $A\oplus _1 X$ as a Banach $A\oplus _1 X$ -module and characterise the BSE module property on $A\oplus _1 X$. We show that $A\oplus _1 X$ is a BSE Banach $A\oplus _1 X$ -module if and only if A and X are BSE Banach A-modules. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00049727
Volume :
105
Issue :
1
Database :
Academic Search Index
Journal :
Bulletin of the Australian Mathematical Society
Publication Type :
Academic Journal
Accession number :
154711608
Full Text :
https://doi.org/10.1017/S0004972721000502