Back to Search Start Over

Quantifying Environmental and Economic Impacts of Highly Porous Activated Carbon from Lignocellulosic Biomass for High-Performance Supercapacitors.

Authors :
Wang, Yuxi
Wang, Jingxin
Zhang, Xufeng
Bhattacharyya, Debangsu
Sabolsky, Edward M.
Source :
Energies (19961073). Jan2022, Vol. 15 Issue 1, p351. 1p.
Publication Year :
2022

Abstract

Activated carbons (AC) from lignocellulosic biomass feedstocks are used in a broad range of applications, especially for electrochemical devices such as supercapacitor electrodes. Limited studies of environmental and economic impacts for AC supercapacitor production have been conducted. Thus, this paper evaluated the environmental and economic impacts of AC produced from lignocellulosic biomass for energy-storage purposes. The life cycle assessment (LCA) was employed to quantify the potential environmental impacts associated with AC production via the proposed processes including feedstock establishment, harvest, transport, storage, and in-plant production. A techno-economic model was constructed to analyze the economic feasibility of AC production, which included the processes in the proposed technology, as well as the required facility installation and management. A base case, together with two alternative scenarios of KOH-reuse and steam processes for carbon activation, were evaluated for both environmental and economic impacts, while the uncertainty of the net present value (NPV) of the AC production was examined with seven economic indicators. Our results indicated that overall "in-plant production" process presented the highest environmental impacts. Normalized results of the life-cycle impact assessment showed that the AC production had environmental impacts mainly on the carcinogenics, ecotoxicity, and non-carcinogenics categories. We then further focused on life cycle analysis from raw biomass delivery to plant gate, the results showed that "feedstock establishment" had the most significant environmental impact, ranging from 50.3% to 85.2%. For an activated carbon plant producing 3000 kg AC per day in the base case, the capital cost would be USD 6.66 million, and annual operation cost was found to be USD 15.46 million. The required selling price (RSP) of AC was USD 16.79 per kg, with the discounted payback period (DPB) of 9.98 years. Alternative cases of KOH-reuse and steam processes had GHG emissions of 15.4 kg CO2 eq and 10.2 kg CO2 eq for every 1 kg of activated carbon, respectively. Monte Carlo simulation showed 49.96% of the probability for an investment to be profitable in activated carbon production from lignocellulosic biomass for supercapacitor electrodes. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19961073
Volume :
15
Issue :
1
Database :
Academic Search Index
Journal :
Energies (19961073)
Publication Type :
Academic Journal
Accession number :
154586988
Full Text :
https://doi.org/10.3390/en15010351