Back to Search
Start Over
Predicting the Distribution of Oxytropis ochrocephala Bunge in the Source Region of the Yellow River (China) Based on UAV Sampling Data and Species Distribution Model.
- Source :
-
Remote Sensing . Dec2021, Vol. 13 Issue 24, p5129-N.PAG. 1p. - Publication Year :
- 2021
-
Abstract
- Oxytropis ochrocephala Bunge is an herbaceous perennial poisonous weed. It severely affects the production of local animal husbandry and ecosystem stability in the source region of Yellow River (SRYR), China. To date, however, the spatiotemporal distribution of O. ochrocephala is still unclear, mainly due to lack of high-precision observation data and effective methods at a regional scale. In this study, an efficient sampling method, based on unmanned aerial vehicle (UAV), was proposed to supply basic sampling data for species distribution models (SDMs, BIOMOD in this study). A total of 3232 aerial photographs were obtained, from 2018 to 2020, in SRYR, and the potential and future distribution of O. ochrocephala were predicted by an ensemble model, consisting of six basic models of BIOMOD. The results showed that: (1) O. ochrocephala mainly distributed in the southwest, middle, and northeast of the SRYR, and the high suitable habitat of O. ochrocephala accounted for 3.19%; (2) annual precipitation and annual mean temperature were the two most important factors that affect the distribution of O. ochrocephala, with a cumulative importance of 60.45%; and (3) the distribution probability of O. ochrocephala tends to increase from now to the 2070s, while spatial distribution ranges will remain in the southwest, middle, and northeast of the SRYR. This study shows that UAVs can potentially be used to obtain the basic data for species distribution modeling; the results are both beneficial to establishing reasonable management practices and animal husbandry in alpine grassland systems. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 20724292
- Volume :
- 13
- Issue :
- 24
- Database :
- Academic Search Index
- Journal :
- Remote Sensing
- Publication Type :
- Academic Journal
- Accession number :
- 154458413
- Full Text :
- https://doi.org/10.3390/rs13245129