Back to Search Start Over

Farley–Sabalka's Morse-Theory Model and the Higher Topological Complexity of Ordered Configuration Spaces on Trees.

Authors :
Aguilar-Guzmán, Jorge
González, Jesús
Hoekstra-Mendoza, Teresa
Source :
Discrete & Computational Geometry. Jan2022, Vol. 67 Issue 1, p258-286. 29p.
Publication Year :
2022

Abstract

Using the ordered analogue of Farley–Sabalka's discrete gradient field on the configuration space of a graph, we unravel a levelwise behavior of the generators of the pure braid group on a tree. This allows us to generalize Farber's equivariant description of the homotopy type of the configuration space on a tree on two particles. The results are applied to the calculation of all the higher topological complexities of ordered configuration spaces on trees on any number of particles. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01795376
Volume :
67
Issue :
1
Database :
Academic Search Index
Journal :
Discrete & Computational Geometry
Publication Type :
Academic Journal
Accession number :
154342426
Full Text :
https://doi.org/10.1007/s00454-021-00306-3