Back to Search Start Over

Influence of Inherent Characteristic of PV Plants in Risk-Based Stochastic Dynamic Substation Expansion Planning Under MILP Framework.

Authors :
Yurtseven, Kaan
Karatepe, Engin
Source :
IEEE Transactions on Power Systems. Jan2022, Vol. 37 Issue 1, p750-763. 14p.
Publication Year :
2022

Abstract

A suitable probabilistic scenario set of load demand and natural characteristics of renewable energy is becoming a crucial issue in power system planning studies. Properly addressing the impact of potentially thousands of residential PV plants on the resilience and reliability needs of substations necessitates the representation of inherent relations between photovoltaics and the load throughout the long-term planning period. The optimal planning of substation expansions is achievable through proper modeling of input parameters which describes the characteristics of the service areas. In this paper, the co-existence of PV plants and the load in a service area under three different states such as daytime with clear-sky and no-fault, daytime with abnormal events, and nighttime are incorporated into the stochastic dynamic optimization problem by using scenario-based approach. The scenario tree of the problem is branched from three different bases simultaneously instead of only one as in conventional approach. This paper also combines the risk-constrained stochastic dynamic SEP problem and Mixed Integer Linear Programming (MILP) framework under one roof. The comparison between integrating inherent characteristics of PV plants with and without considering abnormal events into the optimization is performed to show the impact of suitable probabilistic model on dynamic nature of investment decisions. [ABSTRACT FROM AUTHOR]

Subjects

Subjects :
*MIXED integer linear programming

Details

Language :
English
ISSN :
08858950
Volume :
37
Issue :
1
Database :
Academic Search Index
Journal :
IEEE Transactions on Power Systems
Publication Type :
Academic Journal
Accession number :
154265977
Full Text :
https://doi.org/10.1109/TPWRS.2021.3095266