Back to Search Start Over

Hardware Limitations to Secure C-ITS: Experimental Evaluation and Solutions.

Authors :
Pollicino, Francesco
Stabili, Dario
Ferretti, Luca
Marchetti, Mirco
Source :
IEEE Transactions on Vehicular Technology. Dec2021, Vol. 70 Issue 12, p12946-12959. 14p.
Publication Year :
2021

Abstract

Cooperative Intelligent Transportation Systems (C-ITS) improve driving experience and safety through secure Vehicular Ad-hoc NETworks (VANETs) that satisfy strict security and performance constraints. Relevant standards, such as the IEEE 1609.2, prescribe network-efficient cryptographic protocols to reduce communication latencies through a combination of the Elliptic Curve Qu-Vanstone (ECQV) implicit certificate scheme and the Elliptic Curve Digital Signature Algorithm (ECDSA). However, literature lacks open implementations and performance evaluations for vehicular systems. This paper assesses the applicability of IEEE 1609.2 and of ECQV and ECDSA schemes to C-ITSs. We release an open implementation of the standard ECQV scheme to benchmark its execution time on automotive-grade boards. Moreover, we evaluate its performance in real road and traffic scenarios and show that compliance with strict latency requirements defined for C-ITS requires computational resources that are not met by many automotive-grade embedded hardware platforms. As a final contribution, we propose and evaluate novel heuristics to reduce the number of signatures to be verified in real C-ITS scenarios. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00189545
Volume :
70
Issue :
12
Database :
Academic Search Index
Journal :
IEEE Transactions on Vehicular Technology
Publication Type :
Academic Journal
Accession number :
154240481
Full Text :
https://doi.org/10.1109/TVT.2021.3122333