Back to Search Start Over

Synergistic chemo-photothermal cancer therapy of pH-responsive polymeric nanoparticles loaded IR825 and DTX with charge-reversal property.

Authors :
Wang, Xiaowei
Gu, Yaxuan
Li, Qi
Xu, Yapeng
Shi, Yifan
Wang, Zheran
Xia, Mingyu
Li, Ji
Wang, Dongkai
Source :
Colloids & Surfaces B: Biointerfaces. Jan2022:Part 2, Vol. 209, pN.PAG-N.PAG. 1p.
Publication Year :
2022

Abstract

IR825 is a kind of near-infrared (NIR) small molecule cyanine dye and has distinct near-infrared absorbance and excellent thermal conversion performance. Due to poor stability and insufficient therapy efficacy, various nano-systems have been developed as delivery vehicles for NIR dyes to improve their application in tumor treatment. Herein, we developed an intelligent polymer drug vehicle (Mal-PAH-PEG-DMMA/ poly (ethylene imine) – poly(ε-caprolactone) block polymers, MPPD/PEI-PCL) based on pH-responsive charge-reversal to deliver docetaxel (DTX) and photosensitizer (IR825) for chemo-photothermal combination therapy (MPPD@IR825/DTX NPs). MPPD@IR825/DTX NPs could undergo charge conversion in a slightly acidic microenvironment (pH 6.8), resulted in strong electrostatic repulsion to withdraw the shell of the polymer nanoparticles (MPPD), enhanced cellular uptake and increased drug release. MPPD@IR825/DTX NPs demonstrated nanoscale in size with good mono-dispersity and stability, triggered DTX release in response to acid environment and NIR stimulation, in the same time providing excellent photothermal conversion efficiency. In vitro and In vivo experiments confirmed that charge-reversal polymeric nanoparticles improved antitumor efficiency in 4T1 tumor cell modal than non-charge-reversal polymeric nanoparticles. Furthermore, in comparison with chemotherapy or photothermal therapy in a single treatment mode, chemo-photothermal combination therapy of MPPD@IR825/DTX NPs with laser irradiation showed highly efficient tumor ablation. In addition, the polymeric nanoparticles exhibited good biocompatibility and safety. Therefore, the design of charge-reversal polymeric nanoparticles (MPPD@IR825/DTX NPs) provides a new strategy and promising application for targeting and synergistic chemo-photothermal combination therapy. [Display omitted] • Chemo-photothermal combined therapy enhances the effect of cancer treatment. • IR825 has excellent photothermal conversion efficiency under laser irradiation. • MPPD@IR825/DTX NPs had charge-switchable properties in a slightly acidic environment. • MPPD@IR825/DTX NPs had excellent photothermal conversion properties under laser. • MPPD@IR825/DTX NPs improved antitumor efficiency in 4T1 tumor cell modal. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09277765
Volume :
209
Database :
Academic Search Index
Journal :
Colloids & Surfaces B: Biointerfaces
Publication Type :
Academic Journal
Accession number :
153974118
Full Text :
https://doi.org/10.1016/j.colsurfb.2021.112164