Back to Search Start Over

Therapeutic inhibition of GAS6-AS1/YBX1/MYC axis suppresses cell propagation and disease progression of acute myeloid leukemia.

Authors :
Zhou, Hao
Liu, Wei
Zhou, Yongming
Hong, Zhenya
Ni, Jian
Zhang, Xiaoping
Li, Ziping
Li, Mengyuan
He, Wenjuan
Zhang, Donghua
Chen, Xuexing
Zhu, Jianhua
Source :
Journal of Experimental & Clinical Cancer Research (17569966). 11/9/2021, Vol. 40 Issue 1, p1-17. 17p.
Publication Year :
2021

Abstract

Background: Acute myeloid leukemia (AML) is the most common type of leukemia in adults. Its therapy has not significantly improved during the past four decades despite intense research efforts. New molecularly targeted therapies are in great need. The proto-oncogene c-Myc (MYC) is an attractive target due to its transactivation role in multiple signaling cascades. Deregulation of the MYC is considered one of a series of oncogenic events required for tumorigenesis. However, limited knowledge is available on which mechanism underlie MYC dysregulation and how long non-coding RNAs (lncRNAs) are involved in MYC dysregulation in AML. Methods: AML microarray chips and public datasets were screened to identify novel lncRNA GAS6-AS1 was dysregulated in AML. Gain or loss of functional leukemia cell models were produced, and in vitro and in vivo experiments were applied to demonstrate its leukemogenic phenotypes. Interactive network analyses were performed to define intrinsic mechanism. Results: We identified GAS6-AS1 was overexpressed in AML, and its aberrant function lead to more aggressive leukemia phenotypes and poorer survival outcomes. We revealed that GAS6-AS1 directly binds Y-box binding protein 1 (YBX1) to facilitate its interaction with MYC, leading to MYC transactivation and upregulation of IL1R1, RAB27B and other MYC target genes associated with leukemia progression. Further, lentiviral-based GAS6-AS1 silencing inhibited leukemia progression in vivo. Conclusions: Our findings revealed a previously unappreciated role of GAS6-AS1 as an oncogenic lncRNA in AML progression and prognostic prediction. Importantly, we demonstrated that therapeutic targeting of the GAS6-AS1/YBX1/MYC axis inhibits AML cellular propagation and disease progression. Our insight in lncRNA associated MYC-driven leukemogenesis may contribute to develop new anti-leukemia treatment strategies. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
17569966
Volume :
40
Issue :
1
Database :
Academic Search Index
Journal :
Journal of Experimental & Clinical Cancer Research (17569966)
Publication Type :
Academic Journal
Accession number :
153473415
Full Text :
https://doi.org/10.1186/s13046-021-02145-9