Back to Search Start Over

Inverted and Programmable Poynting Effects in Metamaterials.

Authors :
Ghorbani, Aref
Dykstra, David
Coulais, Corentin
Bonn, Daniel
van der Linden, Erik
Habibi, Mehdi
Source :
Advanced Science. 10/20/2021, Vol. 8 Issue 20, p1-9. 9p.
Publication Year :
2021

Abstract

The Poynting effect generically manifests itself as the extension of the material in the direction perpendicular to an applied shear deformation (torsion) and is a material parameter hard to design. Unlike isotropic solids, in designed structures, peculiar couplings between shear and normal deformations can be achieved and exploited for practical applications. Here, a metamaterial is engineered that can be programmed to contract or extend under torsion and undergo nonlinear twist under compression. First, it is shown that the system exhibits a novel type of inverted Poynting effect, where axial compression induces a nonlinear torsion. Then the Poynting modulus of the structure is programmed from initial negative values to zero and positive values via a preā€compression applied prior to torsion. The work opens avenues for programming nonlinear elastic moduli of materials and tuning the couplings between shear and normal responses by rational design. Obtaining inverted and programmable Poynting effects in metamaterials inspires diverse applications from designing machine materials, soft robots, and actuators to engineering biological tissues, implants, and prosthetic devices functioning under compression and torsion. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
21983844
Volume :
8
Issue :
20
Database :
Academic Search Index
Journal :
Advanced Science
Publication Type :
Academic Journal
Accession number :
153156856
Full Text :
https://doi.org/10.1002/advs.202102279