Back to Search Start Over

Arabidopsis thaliana myosin XIK is recruited to the Golgi through interaction with a MyoB receptor.

Authors :
Perico, Chiara
Gao, Hongbo
Heesom, Kate J.
Botchway, Stanley W.
Sparkes, Imogen A.
Source :
Communications Biology. 10/13/2021, Vol. 4 Issue 1, p1-15. 15p.
Publication Year :
2021

Abstract

Plant cell organelles are highly mobile and their positioning play key roles in plant growth, development and responses to changing environmental conditions. Movement is acto-myosin dependent. Despite controlling the dynamics of several organelles, myosin and myosin receptors identified so far in Arabidopsis thaliana generally do not localise to the organelles whose movement they control, raising the issue of how specificity is determined. Here we show that a MyoB myosin receptor, MRF7, specifically localises to the Golgi membrane and affects its movement. Myosin XI-K was identified as a putative MRF7 interactor through mass spectrometry analysis. Co-expression of MRF7 and XI-K tail triggers the relocation of XI-K to the Golgi, linking a MyoB/myosin complex to a specific organelle in Arabidopsis. FRET-FLIM confirmed the in vivo interaction between MRF7 and XI-K tail on the Golgi and in the cytosol, suggesting that myosin/myosin receptor complexes perhaps cycle on and off organelle membranes. This work supports a traditional mechanism for organelle movement where myosins bind to receptors and adaptors on the organelle membranes, allowing them to actively move on the actin cytoskeleton, rather than passively in the recently proposed cytoplasmic streaming model. Perico et al. use co-expression analysis and a FRET-FLIM approach to show that the Arabidopsis MyoB myosin receptor, MRF7, triggers the relocation of Myosin XI-K to the Golgi. As such, this study provides evidence for plant myosin recruitment and control of organelle movement. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
23993642
Volume :
4
Issue :
1
Database :
Academic Search Index
Journal :
Communications Biology
Publication Type :
Academic Journal
Accession number :
153011660
Full Text :
https://doi.org/10.1038/s42003-021-02700-2