Back to Search Start Over

Generalized additive regression for group testing data.

Authors :
Liu, Yan
McMahan, Christopher S
Tebbs, Joshua M
Gallagher, Colin M
Bilder, Christopher R
Source :
Biostatistics. Oct2021, Vol. 22 Issue 4, p873-889. 17p.
Publication Year :
2021

Abstract

In screening applications involving low-prevalence diseases, pooling specimens (e.g., urine, blood, swabs, etc.) through group testing can be far more cost effective than testing specimens individually. Estimation is a common goal in such applications and typically involves modeling the probability of disease as a function of available covariates. In recent years, several authors have developed regression methods to accommodate the complex structure of group testing data but often under the assumption that covariate effects are linear. Although linearity is a reasonable assumption in some applications, it can lead to model misspecification and biased inference in others. To offer a more flexible framework, we propose a Bayesian generalized additive regression approach to model the individual-level probability of disease with potentially misclassified group testing data. Our approach can be used to analyze data arising from any group testing protocol with the goal of estimating multiple unknown smooth functions of covariates, standard linear effects for other covariates, and assay classification accuracy probabilities. We illustrate the methods in this article using group testing data on chlamydia infection in Iowa. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14654644
Volume :
22
Issue :
4
Database :
Academic Search Index
Journal :
Biostatistics
Publication Type :
Academic Journal
Accession number :
152975414
Full Text :
https://doi.org/10.1093/biostatistics/kxaa003