Back to Search Start Over

Constructing a hierarchically structured KNi0.67Co0.33PO4·H2O-graphene hydrogel/Ni foam electrode for superior all-solid-state supercapacitor.

Authors :
Ma, Xueying
Feng, Hanfang
Yan, Tianxiang
Zhang, Li
Liu, Xuying
Cao, Shaokui
Source :
Dalton Transactions: An International Journal of Inorganic Chemistry. 10/14/2021, Vol. 50 Issue 38, p13276-13285. 10p.
Publication Year :
2021

Abstract

A monolithic supercapacitor electrode of a KNi0.67Co0.33PO4·H2O-graphene composite hydrogel supported on Ni foam (KNCP-GH/NF) is first prepared by a one-step hydrothermal method, which achieves notable improvements in the electrode surface area and mass-loading of active materials. The KNCP-GH/NF electrode enjoys a hierarchical open-porous structure, where the KNCP-GH composite hydrogel fills in the voids in NF and the porous graphene hydrogel (GH) simultaneously provides a large support surface for growing active KNCP nanoflowers. Accordingly, the KNCP-GH/NF electrode exhibits a strikingly high capacity of 3240 mC cm−2 (876 C g−1) at 2 mA cm−2 and a satisfactory rate performance with 78.3% retention at 100 mA cm−2. Further, an all-solid-state asymmetric supercapacitor, constituted by using KNCP-GH/NF and Fe2P/GH/NF as the cathode and anode, respectively, and PVA-KOH as the solid-state gel electrolyte, delivers a high energy density of 69.2 W h kg−1 (3.9 mW h cm−3) and a power density of 13 229 W kg−1 (720 mW h cm−3) as well as notable cyclability with 81.2% capacity retention after 10 000 charge/discharge cycles. These attractive performances suggest a promising potential for a hierarchically structured KNCP-GH/NF electrode for the high-performance energy storage application. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14779226
Volume :
50
Issue :
38
Database :
Academic Search Index
Journal :
Dalton Transactions: An International Journal of Inorganic Chemistry
Publication Type :
Academic Journal
Accession number :
152889477
Full Text :
https://doi.org/10.1039/d1dt01744f