Back to Search Start Over

Room‐temperature multiferroic characteristics and unique vortex domain structures of h‐Yb1−xInxFeO3 solid solutions.

Authors :
Liu, Mei Ying
Sun, Tu Lai
Zhu, Xiao Li
Liu, Xiao Qiang
Tian, He
Chen, Xiang Ming
Source :
Journal of the American Ceramic Society. Dec2021, Vol. 104 Issue 12, p6393-6403. 11p. 3 Color Photographs, 1 Diagram, 4 Graphs.
Publication Year :
2021

Abstract

Hexagonal rare‐earth ferrites (h‐RFeO3) have attracted much scientific attention due to their room‐temperature multiferroicity. However, it is still a hard job to obtain h‐RFeO3 bulk materials because of the meta‐stability of such hexagonal phase, and the evaluation of room‐temperature ferroelectric and magnetoelectric characteristics in such materials is also a challengeable issue. In the present work, Yb1−xInxFeO3 ceramics with the stable hexagonal structure were obtained by introducing chemical pressure, where the unique ferroelectric domain structures of sixfold vortex combined with tenfold vortex with a typical size of ~400 nm were determined. Symmetry of the present system evolved from centrosymmetric orthorhombic Pbnm (x = 0–0.4) to non‐centrosymmetric hexagonal P63cm (x = 0.5 and 0.6) with a ferroelectric polarization up to 3.2 μC/cm2, and finally to centrosymmetric hexagonal P63/mmc (x = 0.7 and 0.8). The Curie point decreased monotonically from 723 K to a temperature below room temperature with increasing x, and the antiferromagnetic phase transition above room temperature was determined for all compositions. Meanwhile, a large linear magnetoelectric coefficient (αME) up to 0.96 mV/cm Oe was obtained at room temperature, and this indicated the great application potential for magnetoelectric devices. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00027820
Volume :
104
Issue :
12
Database :
Academic Search Index
Journal :
Journal of the American Ceramic Society
Publication Type :
Academic Journal
Accession number :
152886136
Full Text :
https://doi.org/10.1111/jace.17987