Back to Search Start Over

Asymptotic correlations with corrections for the circular Jacobi [formula omitted]-ensemble.

Authors :
Forrester, Peter J.
Li, Shi-Hao
Trinh, Allan K.
Source :
Journal of Approximation Theory. Nov2021, Vol. 271, pN.PAG-N.PAG. 1p.
Publication Year :
2021

Abstract

Previous works have considered the leading correction term to the scaled limit of various correlation functions and distributions for classical random matrix ensembles and their β generalisations at the hard and soft edge. It has been found that the functional form of this correction is given by a derivative operation applied to the leading term. In the present work we compute the leading correction term of the correlation kernel at the spectrum singularity for the circular Jacobi ensemble with Dyson indices β = 1 , 2 and 4, and also to the spectral density in the corresponding β -ensemble with β even. The former requires an analysis involving the Routh–Romanovski polynomials, while the latter is based on multidimensional integral formulas for generalised hypergeometric series based on Jack polynomials. In all cases this correction term is found to be related to the leading term by a derivative operation. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00219045
Volume :
271
Database :
Academic Search Index
Journal :
Journal of Approximation Theory
Publication Type :
Academic Journal
Accession number :
152739154
Full Text :
https://doi.org/10.1016/j.jat.2021.105633