Back to Search Start Over

Suppression of Proliferation of Human Glioblastoma Cells by Combined Phosphodiesterase and Multidrug Resistance-Associated Protein 1 Inhibition.

Authors :
Kopanitsa, Liliya
Kopanitsa, Maksym V.
Safitri, Dewi
Ladds, Graham
Bailey, David S.
Source :
International Journal of Molecular Sciences. Sep2021, Vol. 22 Issue 18, p9665. 1p.
Publication Year :
2021

Abstract

The paucity of currently available therapies for glioblastoma multiforme requires novel approaches to the treatment of this brain tumour. Disrupting cyclic nucleotide-signalling through phosphodiesterase (PDE) inhibition may be a promising way of suppressing glioblastoma growth. Here, we examined the effects of 28 PDE inhibitors, covering all the major PDE classes, on the proliferation of the human U87MG, A172 and T98G glioblastoma cells. The PDE10A inhibitors PF-2545920, PQ10 and papaverine, the PDE3/4 inhibitor trequinsin and the putative PDE5 inhibitor MY-5445 potently decreased glioblastoma cell proliferation. The synergistic suppression of glioblastoma cell proliferation was achieved by combining PF-2545920 and MY-5445. Furthermore, a co-incubation with drugs that block the activity of the multidrug resistance-associated protein 1 (MRP1) augmented these effects. In particular, a combination comprising the MRP1 inhibitor reversan, PF-2545920 and MY-5445, all at low micromolar concentrations, afforded nearly complete inhibition of glioblastoma cell growth. Thus, the potent suppression of glioblastoma cell viability may be achieved by combining MRP1 inhibitors with PDE inhibitors at a lower toxicity than that of the standard chemotherapeutic agents, thereby providing a new combination therapy for this challenging malignancy. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16616596
Volume :
22
Issue :
18
Database :
Academic Search Index
Journal :
International Journal of Molecular Sciences
Publication Type :
Academic Journal
Accession number :
152684993
Full Text :
https://doi.org/10.3390/ijms22189665