Back to Search Start Over

HIV-1 Viral Protein R Couples Metabolic Inflexibility With White Adipose Tissue Thermogenesis.

Authors :
Agarwal, Neeti
Iyer, Dinakar
Saha, Pradip
Cox, Aaron R.
Xia, Yan
Utay, Netanya S.
Somasundaram, Anoma
Schubert, Ulrich
Lake, Jordan E.
Hartig, Sean M.
Balasubramanyam, Ashok
Source :
Diabetes. Sep2021, Vol. 70 Issue 9, p2014-2025. 12p.
Publication Year :
2021

Abstract

Persons living with HIV (PLWH) manifest chronic disorders of brown and white adipose tissues that lead to diabetes and metabolic syndrome. The mechanisms that link viral factors to defective adipose tissue function and abnormal energy balance in PLWH remain incompletely understood. Here, we explored how the HIV accessory protein viral protein R (Vpr) contributes to adaptive thermogenesis in two mouse models and human adipose tissues. Uncoupling protein 1 (UCP1) gene expression was strongly increased in subcutaneous white adipose tissue (WAT) biopsy specimens from PLWH and in subcutaneous WAT of the Vpr mice, with nearly equivalent mRNA copy number. Histology and functional studies confirmed beige transformation in subcutaneous but not visceral WAT in the Vpr mice. Measurements of energy balance indicated Vpr mice displayed metabolic inflexibility and could not shift efficiently from carbohydrate to fat metabolism during day-night cycles. Furthermore, Vpr mice showed a marked inability to defend body temperature when exposed to 4°C. Importantly, Vpr couples higher tissue catecholamine levels with UCP1 expression independent of β-adrenergic receptors. Our data reveal surprising deficits of adaptive thermogenesis that drive metabolic inefficiency in HIV-1 Vpr mouse models, providing an expanded role for viral factors in the pathogenesis of metabolic disorders in PLWH. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00121797
Volume :
70
Issue :
9
Database :
Academic Search Index
Journal :
Diabetes
Publication Type :
Academic Journal
Accession number :
152620420
Full Text :
https://doi.org/10.2337/db20-0888