Back to Search Start Over

Tree species identity and composition shape the epiphytic lichen community of structurally simple boreal forests over vast areas.

Authors :
Klein, Julian
Low, Matthew
Thor, Göran
Sjögren, Jörgen
Lindberg, Eva
Eggers, Sönke
Source :
PLoS ONE. 9/17/2021, Vol. 17 Issue 9, p1-17. 17p.
Publication Year :
2021

Abstract

Greatly simplified ecosystems are often neglected for biodiversity studies. However, these simplified systems dominate in many regions of the world, and a lack of understanding of what shapes species occurrence in these systems can have consequences for biodiversity and ecosystem services at a massive scale. In Fennoscandia, ~90% of the boreal forest (~21Mha) is structurally simplified with little knowledge of how forest structural elements shape the occurrence and diversity of for example epiphytic lichens in these managed forests. One form of structural simplification is the reduction of the number and frequency of different tree species. As many lichen species have host tree preferences, it is particularly likely that this simplification has a huge effect on the lichen community in managed forests. In a 40–70 years old boreal forest in Sweden, we therefore related the occurrence and richness of all observed epiphytic lichens to the host tree species and beta and gamma lichen diversity at the forest stand level to the stand's tree species composition and stem diameter. Picea abies hosted the highest lichen richness followed by Pinus sylvestris, Quercus robur, Alnus glutinosa, Betula spp., and Populus tremula. However, P. tremula hosted twice as many uncommon species as any of the other tree species. Stand level beta and gamma diversity was twice as high on stands with four compared to one tree species, and was highest when either coniferous or deciduous trees made up 40–50% of the trees. The stem diameter was positively related to lichen richness at the tree and stand level, but negatively to beta diversity. For biodiversity, these findings imply that leaving a few trees of a different species during forest thinning is unlikely as effective as combining life-boat trees for endangered species with an even tree species mixture. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19326203
Volume :
17
Issue :
9
Database :
Academic Search Index
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
152521162
Full Text :
https://doi.org/10.1371/journal.pone.0257564