Back to Search Start Over

Connectivity alterations in autism reflect functional idiosyncrasy.

Authors :
Benkarim, Oualid
Paquola, Casey
Park, Bo-yong
Hong, Seok-Jun
Royer, Jessica
Vos de Wael, Reinder
Lariviere, Sara
Valk, Sofie
Bzdok, Danilo
Mottron, Laurent
C. Bernhardt, Boris
Source :
Communications Biology. 9/15/2021, Vol. 4 Issue 1, p1-15. 15p.
Publication Year :
2021

Abstract

Autism spectrum disorder (ASD) is commonly understood as an alteration of brain networks, yet case-control analyses against typically-developing controls (TD) have yielded inconsistent results. Here, we devised a novel approach to profile the inter-individual variability in functional network organization and tested whether such idiosyncrasy contributes to connectivity alterations in ASD. Studying a multi-centric dataset with 157 ASD and 172 TD, we obtained robust evidence for increased idiosyncrasy in ASD relative to TD in default mode, somatomotor and attention networks, but also reduced idiosyncrasy in lateral temporal cortices. Idiosyncrasy increased with age and significantly correlated with symptom severity in ASD. Furthermore, while patterns of functional idiosyncrasy were not correlated with ASD-related cortical thickness alterations, they co-localized with the expression patterns of ASD risk genes. Notably, we could demonstrate that patterns of atypical idiosyncrasy in ASD closely overlapped with connectivity alterations that are measurable with conventional case-control designs and may, thus, be a principal driver of inconsistency in the autism connectomics literature. These findings support important interactions between inter-individual heterogeneity in autism and functional signatures. Our findings provide novel biomarkers to study atypical brain development and may consolidate prior research findings on the variable nature of connectome level anomalies in autism. Benkarim et al devise an approach to profile inter-individual variability in functional network organization and test whether such idiosyncrasy contributes to the connectivity alterations found in Autism Spectrum Disorder. Their approach provides potential biomarkers to study atypical brain development and may be used to consolidate prior research findings on the variable nature of connectome level anomalies in autism. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
23993642
Volume :
4
Issue :
1
Database :
Academic Search Index
Journal :
Communications Biology
Publication Type :
Academic Journal
Accession number :
152463481
Full Text :
https://doi.org/10.1038/s42003-021-02572-6