Back to Search
Start Over
Noncommutative matrix factorizations with an application to skew exterior algebras.
- Source :
-
Journal of Algebra . Nov2021, Vol. 586, p1053-1087. 35p. - Publication Year :
- 2021
-
Abstract
- Theory of matrix factorizations is useful to study hypersurfaces in commutative algebra. To study noncommutative hypersurfaces, which are important objects of study in noncommutative algebraic geometry, we introduce a notion of noncommutative matrix factorization for an arbitrary nonzero non-unit element of a ring. First we show that the category of noncommutative graded matrix factorizations is invariant under the operation called twist (this result is a generalization of the result by Cassidy-Conner-Kirkman-Moore). Then we give two category equivalences involving noncommutative matrix factorizations and totally reflexive modules (this result is analogous to the famous result by Eisenbud for commutative hypersurfaces). As an application, we describe indecomposable noncommutative graded matrix factorizations over skew exterior algebras. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00218693
- Volume :
- 586
- Database :
- Academic Search Index
- Journal :
- Journal of Algebra
- Publication Type :
- Academic Journal
- Accession number :
- 152429007
- Full Text :
- https://doi.org/10.1016/j.jalgebra.2021.07.012