Back to Search Start Over

THE CYCLIC GRAPH OF A Z -GROUP.

Authors :
COSTANZO, DAVID G.
LEWIS, MARK L.
SCHMIDT, STEFANO
TSEGAYE, EYOB
UDELL, GABE
Source :
Bulletin of the Australian Mathematical Society. Oct2021, Vol. 104 Issue 2, p295-301. 7p.
Publication Year :
2021

Abstract

For a group G, we define a graph $\Delta (G)$ by letting $G^{\scriptsize\#}=G\setminus {\{\,1\,\}} $ be the set of vertices and by drawing an edge between distinct elements $x,y\in G^{\scriptsize\#}$ if and only if the subgroup $\langle x,y\rangle $ is cyclic. Recall that a Z-group is a group where every Sylow subgroup is cyclic. In this short note, we investigate $\Delta (G)$ for a Z-group G. [ABSTRACT FROM AUTHOR]

Subjects

Subjects :
*SYLOW subgroups

Details

Language :
English
ISSN :
00049727
Volume :
104
Issue :
2
Database :
Academic Search Index
Journal :
Bulletin of the Australian Mathematical Society
Publication Type :
Academic Journal
Accession number :
152295314
Full Text :
https://doi.org/10.1017/S0004972720001318