Back to Search
Start Over
Magnetoelectric Memory Based on Ferromagnetic/Ferroelectric Multiferroic Heterostructure.
- Source :
-
Materials (1996-1944) . Aug2021, Vol. 14 Issue 16, p4623-4623. 1p. - Publication Year :
- 2021
-
Abstract
- Electric-field control of magnetism is significant for the next generation of large-capacity and low-power data storage technology. In this regard, the renaissance of a multiferroic compound provides an elegant platform owing to the coexistence and coupling of ferroelectric (FE) and magnetic orders. However, the scarcity of single-phase multiferroics at room temperature spurs zealous research in pursuit of composite systems combining a ferromagnet with FE or piezoelectric materials. So far, electric-field control of magnetism has been achieved in the exchange-mediated, charge-mediated, and strain-mediated ferromagnetic (FM)/FE multiferroic heterostructures. Concerning the giant, nonvolatile, and reversible electric-field control of magnetism at room temperature, we first review the theoretical and representative experiments on the electric-field control of magnetism via strain coupling in the FM/FE multiferroic heterostructures, especially the CoFeB/PMN–PT [where PMN–PT denotes the (PbMn1/3Nb2/3O3)1−x-(PbTiO3)x] heterostructure. Then, the application in the prototype spintronic devices, i.e., spin valves and magnetic tunnel junctions, is introduced. The nonvolatile and reversible electric-field control of tunneling magnetoresistance without assistant magnetic field in the magnetic tunnel junction (MTJ)/FE architecture shows great promise for the future of data storage technology. We close by providing the main challenges of this and the different perspectives for straintronics and spintronics. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 19961944
- Volume :
- 14
- Issue :
- 16
- Database :
- Academic Search Index
- Journal :
- Materials (1996-1944)
- Publication Type :
- Academic Journal
- Accession number :
- 152146793
- Full Text :
- https://doi.org/10.3390/ma14164623