Back to Search Start Over

Low thermal conductivity in a modular inorganic material with bonding anisotropy and mismatch.

Authors :
Gibson, Quinn D.
Zhao, Tianqi
Daniels, Luke M.
Walker, Helen C.
Daou, Ramzy
Hébert, Sylvie
Zanella, Marco
Dyer, Matthew S.
Claridge, John B.
Slater, Ben
Gaultois, Michael W.
Corà, Furio
Alaria, Jonathan
Rosseinsky, Matthew J.
Source :
Science. 8/27/2021, Vol. 373 Issue 6558, p1017-1022. 6p. 4 Diagrams.
Publication Year :
2021

Abstract

The thermal conductivity of crystalline materials cannot be arbitrarily low, as the intrinsic limit depends on the phonon dispersion. We used complementary strategies to suppress the contribution of the longitudinal and transverse phonons to heat transport in layered materials that contain different types of intrinsic chemical interfaces. BiOCl and Bi2O2Se encapsulate these design principles for longitudinal and transverse modes, respectively, and the bulk superlattice material Bi4O4SeCl2 combines these effects by ordering both interface types within its unit cell to reach an extremely low thermal conductivity of 0.1 watts per kelvin per meter at room temperature along its stacking direction. This value comes within a factor of four of the thermal conductivity of air. We demonstrated that chemical control of the spatial arrangement of distinct interfaces can synergically modify vibrational modes to minimize thermal conductivity. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00368075
Volume :
373
Issue :
6558
Database :
Academic Search Index
Journal :
Science
Publication Type :
Academic Journal
Accession number :
152116734
Full Text :
https://doi.org/10.1126/science.abh1619