Back to Search
Start Over
Extended field-of-view ultrathin microendoscopes for high-resolution two-photon imaging with minimal invasiveness.
- Source :
-
eLife . 11/24/2020, p1-35. 35p. - Publication Year :
- 2020
-
Abstract
- Imaging neuronal activity with high and homogeneous spatial resolution across the field-of-view (FOV) and limited invasiveness in deep brain regions is fundamental for the progress of neuroscience, yet is a major technical challenge. We achieved this goal by correcting optical aberrations in gradient index lens-based ultrathin (≤500 μm) microendoscopes using aspheric microlenses generated through 3D-microprinting. Corrected microendoscopes had extended FOV (eFOV) with homogeneous spatial resolution for two-photon fluorescence imaging and required no modification of the optical set-up. Synthetic calcium imaging data showed that, compared to uncorrected endoscopes, eFOV-microendoscopes led to improved signal-to-noise ratio and more precise evaluation of correlated neuronal activity. We experimentally validated these predictions in awake head-fixed mice. Moreover, using eFOV-microendoscopes we demonstrated cell-specific encoding of behavioral state-dependent information in distributed functional subnetworks in a primary somatosensory thalamic nucleus. eFOV-microendoscopes are, therefore, small-cross-section ready-to-use tools for deep two-photon functional imaging with unprecedentedly high and homogeneous spatial resolution. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 2050084X
- Database :
- Academic Search Index
- Journal :
- eLife
- Publication Type :
- Academic Journal
- Accession number :
- 152086909
- Full Text :
- https://doi.org/10.7554/eLife.58882