Back to Search Start Over

From emission scenarios to spatially resolved projections with a chain of computationally efficient emulators: MAGICC (v7.5.1) - MESMER (v0.8.1) coupling.

Authors :
Beusch, Lea
Nicholls, Zebedee
Gudmundsson, Lukas
Hauser, Mathias
Meinshausen, Malte
Seneviratne, Sonia I.
Source :
Geoscientific Model Development Discussions. 8/17/2021, p1-26. 26p.
Publication Year :
2021

Abstract

Producing targeted climate information at the local scale, including major sources of climate change projection uncertainty for diverse emissions scenarios, is essential to support climate change mitigation and adaptation efforts. Here, we present the first chain of computationally efficient Earth System Model (ESM) emulators allowing to rapidly translate greenhouse gas emission pathways into spatially resolved annual-mean temperature anomaly field time series, accounting for both forced climate response and natural variability uncertainty at the local scale. By combining the global-mean, emissions-driven emulator MAGICC with the spatially resolved emulator MESMER, ESM-specific as well as constrained probabilistic emulated ensembles can be derived. This emulation chain can hence build on and extend large multi-ESM ensembles such as the ones produced within the 6th phase of the Coupled Model Intercomparison Project (CMIP6). The main extensions are threefold. (i) A more thorough sampling of the forced climate response and the natural variability uncertainty is possible with millions of emulated realizations being readily created. (ii) The same uncertainty space can be sampled for any emission pathway, which is not the case in CMIP6, where some of the most societally relevant strong mitigation scenarios have been run by only a small number of ESMs. (iii) Other lines of evidence to constrain future projections, including observational constraints, can be introduced, which helps to refine projected future ranges beyond the multi-ESM ensemble's estimates. In addition to presenting results from the coupled MAGICC-MESMER emulator chain, we carry out an extensive validation of MESMER, which is trained on and applied to multiple emission pathways for the first time in this study. The newly developed MAGICC-MESMER coupled emulator will allow unprecedented assessments of the implications of manifold emissions pathways at regional scale. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19919611
Database :
Academic Search Index
Journal :
Geoscientific Model Development Discussions
Publication Type :
Academic Journal
Accession number :
151995757
Full Text :
https://doi.org/10.5194/gmd-2021-252