Back to Search Start Over

Environmentally Friendly Synthesis of Poly(3,4-Ethylenedioxythiophene): Poly(Styrene Sulfonate)/SnO 2 Nanocomposites.

Authors :
Díez-Pascual, Ana M.
Source :
Polymers (20734360). Aug2021, Vol. 13 Issue 15, p2445-2445. 1p.
Publication Year :
2021

Abstract

Conductive poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is widely used for practical applications such as energy conversion and storage devices owing to its good flexibility, processability, high electrical conductivity, and superior optical transparency, among others. However, its hygroscopic character, short durability, and poor thermoelectric performance compared to inorganic counterparts has greatly limited its high-tech applications. In this work, PEDOT:PSS/SnO2 nanocomposites have been prepared via a simple, low cost, environmentally friendly method without the use of organic solvents or compatibilizing agents. Their morphology, thermal, thermoelectrical, optical, and mechanical properties have been characterized. Electron microscopy analysis revealed a uniform dispersion of the SnO2 nanoparticles, and the Raman spectra revealed the existence of very strong SnO2-PEDOT:PSS interactions. The stiffness and strength of the matrix gradually increased with increasing SnO2 content, up to 120% and 65%, respectively. Moreover, the nanocomposites showed superior thermal stability (as far as 70 °C), improved electrical conductivity (up to 140%), and higher Seebeck coefficient (about 80% increase) than neat PEDOT:PSS. On the other hand, hardly any change in optical transparency was observed. These sustainable nanocomposites show considerably improved performance compared to commercial PEDOT:PSS, and can be highly useful for applications in energy storage, flexible electronics, thermoelectric devices, and related fields. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20734360
Volume :
13
Issue :
15
Database :
Academic Search Index
Journal :
Polymers (20734360)
Publication Type :
Academic Journal
Accession number :
151784894
Full Text :
https://doi.org/10.3390/polym13152445