Back to Search Start Over

Biofouling impacts on polyethylene density and sinking in coastal waters: A macro/micro tipping point?

Authors :
Amaral-Zettler, Linda A.
Zettler, Erik R.
Mincer, Tracy J.
Klaassen, Michiel A.
Gallager, Scott M.
Source :
Water Research. Aug2021, Vol. 201, pN.PAG-N.PAG. 1p.
Publication Year :
2021

Abstract

• Relative surface area alone does not determine sinking of bio-fouled plastic. • Once it sinks, plastic in all but the deepest waters may remain negatively buoyant. • Microbes alone only cause sinking of plastic pieces with surface-area:volume ratios above 100. • Results suggest a size tipping point where invertebrates vs. microbes cause plastic to sink. Biofouling causing an increase in plastic density and sinking is one of the hypotheses to account for the unexpectedly low amount of buoyant plastic debris encountered at the ocean surface. Field surveys show that polyethylene and polypropylene, the two most abundant buoyant plastics, both occur below the surface and in sediments, and experimental studies confirm that biofouling can cause both of these plastics to sink. However, studies quantifying the actual density of fouled plastics are rare, despite the fact that density will determine the transport and eventual fate of plastic in the ocean. Here we investigated the role of microbial biofilms in sinking of polyethylene microplastic and quantified the density changes natural biofouling communities cause in the coastal waters of the North Sea. Molecular data confirmed the variety of bacteria and eukaryotes (including animals and other multicellular organisms) colonizing the plastic over time. Fouling communities increased the density of plastic and caused sinking, and the plastic remained negatively buoyant even during the winter with lower growth rates. Relative surface area alone, however, did not predict whether a plastic piece sank. Due to patchy colonization, fragmentation of sinking pieces may result in smaller pieces regaining buoyancy and returning to the surface. Our results suggest that primarily multicellular organisms cause sinking of plastic pieces with surface area to volume ratios (SA:V) below 100 (generally pieces above a couple hundred micrometers in size), and that this is a "tipping point" at which microbial biofilms become the key players causing sinking of smaller pieces with higher SA:V ratios, including most fibers that are too small for larger (multicellular) organisms to colonize. [Display omitted] [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00431354
Volume :
201
Database :
Academic Search Index
Journal :
Water Research
Publication Type :
Academic Journal
Accession number :
151684068
Full Text :
https://doi.org/10.1016/j.watres.2021.117289