Back to Search Start Over

A perturbed Kirchhoff problem with critical exponent.

Authors :
Aissaoui, Narimane
Li, Qi
Zheng, Binbin
Source :
Applicable Analysis. Aug2021, Vol. 100 Issue 11, p2368-2385. 18p.
Publication Year :
2021

Abstract

In this paper, we consider a class of Kirchhoff problems as follows (1) − a + b ∫ R N | ∇ u | 2 Δ u = (1 + ε K (x)) u 2 ∗ − 1 , u > 0 i n R N , where a, b>0 are given constants, ϵ is a small parameter and 2 ∗ = 2 N / (N − 2) , N ≥ 3. We first prove the nondegeneracy of positive solutions to Equation (1) when ε = 0. Then, as an application, using a perturbed argument and finite-dimensional reduction method, we prove the existence of positive solutions of Equation (1) for ϵ small. [ABSTRACT FROM AUTHOR]

Subjects

Subjects :
*ARGUMENT

Details

Language :
English
ISSN :
00036811
Volume :
100
Issue :
11
Database :
Academic Search Index
Journal :
Applicable Analysis
Publication Type :
Academic Journal
Accession number :
151609814
Full Text :
https://doi.org/10.1080/00036811.2019.1687884