Back to Search Start Over

Effect of operational strategies on microbial water quality in small scale intermittent water supply systems: The case of Moamba, Mozambique.

Authors :
van den Berg, Harold
Quaye, Michael Nii
Nguluve, Eugenia
Schijven, Jack
Ferrero, Giuliana
Source :
International Journal of Hygiene & Environmental Health. Jul2021, Vol. 236, pN.PAG-N.PAG. 1p.
Publication Year :
2021

Abstract

Intermittent drinking water supply affects the health of over 300 million people globally. In Mozambique, it is largely practiced in cities and small towns. This results in frequent microbial contamination of the supplied drinking water posing a health risk to consumers. In Moamba, a small town in Southern Mozambique with 2,500 water connections, the impact of changes in operational strategies, namely increased chlorine dosage, increased supply duration and first-flush, on the microbial water quality was studied to determine best practices. To that aim, water quality monitoring was enhanced to provide sufficient data on the microbial contamination from 452 samples under the different strategies. The water at the outlet of the water treatment plant during all strategies was free of E. coli complying to the national standards. However, E. coli could be detected at household level. By increasing the chlorine dosage, the number of samples that showed E. coli absence increased at the two sampling locations in the distribution network: in Cimento from 72% to 83% and in Matadouro from 52% to 86%. Modifying the number and duration of supply cycles showed a different impact on the water quality at both locations in the distribution network. A positive effect was shown in Cimento, where the mean concentrations decreased slightly from 0.54 to 0.23 CFU/100 mL and 16.7 to 7.3 CFU/100 mL for E. coli and total coliforms respectively. The percentage of samples positive for bacteria was, however, similar. In contrast, a negative effect was shown in Matadouro where the percentage of positive samples increased and the mean bacterial concentrations increased slightly: E. coli from 0.9 to 1.5 CFU/100 mL and total coliforms 17.6 to 23.0 CFU/100 mL. Enhanced water quality monitoring improved operational strategies safeguarding the microbial water quality. The E. coli contamination of the drinking water at household level could point at recontamination in the distribution or unsafe hygienic practices at household level. Presence of faecal contamination at household level indicates potential presence of pathogens posing a health risk to consumers. Increasing chlorine dosage ensured good microbiological drinking water quality but changing the number of supply cycles had no such effect. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14384639
Volume :
236
Database :
Academic Search Index
Journal :
International Journal of Hygiene & Environmental Health
Publication Type :
Academic Journal
Accession number :
151608757
Full Text :
https://doi.org/10.1016/j.ijheh.2021.113794