Back to Search
Start Over
DNA damage promotes ER stress resistance through elevation of unsaturated phosphatidylcholine in Caenorhabditis elegans.
- Source :
-
Journal of Biological Chemistry . Jan-Jun2021, Vol. 296, p1-11. 11p. - Publication Year :
- 2021
-
Abstract
- DNA damage triggers the cellular adaptive response to arrest proliferation and repair DNA damage; when damage is too severe to be repaired, apoptosis is initiated to prevent the spread of genomic insults. However, how cells endure DNA damage to maintain cell function remains largely unexplored. By using Caenorhabditis elegans as a model, we report that DNA damage elicits cell maintenance programs, including the unfolded protein response of the endoplasmic reticulum (UPRER). Mechanistically, sublethal DNA damage unexpectedly suppresses apoptotic genes in C. elegans, which in turn increases the activity of the inositol-requiring enzyme 1/X-box binding protein 1 (IRE-1/XBP-1) branch of the UPRER by elevating unsaturated phosphatidylcholine. In addition, UPRER activation requires silencing of the lipid regulator skinhead-1 (SKN-1). DNA damage suppresses SKN-1 activity to increase unsaturated phosphatidylcholine and activate UPRER. These findings reveal the UPRER activation as an organismal adaptive response that is important to maintain cell function during DNA damage. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00219258
- Volume :
- 296
- Database :
- Academic Search Index
- Journal :
- Journal of Biological Chemistry
- Publication Type :
- Academic Journal
- Accession number :
- 151446227
- Full Text :
- https://doi.org/10.1074/jbc.RA120.016083