Back to Search Start Over

Studying models of balancing selection using phase-type theory.

Authors :
Kai Zeng
Charlesworth, Brian
Hobolth, Asger
Source :
Genetics. Jun2021, Vol. 218 Issue 2, p1-17. 17p.
Publication Year :
2021

Abstract

Balancing selection (BLS) is the evolutionary force that maintains high levels of genetic variability in many important genes. To further our understanding of its evolutionary significance, we analyze models with BLS acting on a biallelic locus: an equilibrium model with long-term BLS, a model with long-term BLS and recent changes in population size, and a model of recent BLS. Using phase-type theory, a mathematical tool for analyzing continuous time Markov chains with an absorbing state, we examine how BLS affects polymorphism patterns in linked neutral regions, as summarized by nucleotide diversity, the expected number of segregating sites, the site frequency spectrum, and the level of linkage disequilibrium (LD). Long-term BLS affects polymorphism patterns in a relatively small genomic neighborhood, and such selection targets are easier to detect when the equilibrium frequencies of the selected variants are close to 50%, or when there has been a population size reduction. For a new mutation subject to BLS, its initial increase in frequency in the population causes linked neutral regions to have reduced diversity, an excess of both high and low frequency derived variants, and elevated LD with the selected locus. These patterns are similar to those produced by selective sweeps, but the effects of recent BLS are weaker. Nonetheless, compared to selective sweeps, nonequilibrium polymorphism and LD patterns persist for a much longer period under recent BLS, which may increase the chance of detecting such selection targets. An R package for analyzing these models, among others (e.g., isolation with migration), is available. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00166731
Volume :
218
Issue :
2
Database :
Academic Search Index
Journal :
Genetics
Publication Type :
Academic Journal
Accession number :
151323089
Full Text :
https://doi.org/10.1093/genetics/iyab055