Back to Search Start Over

The pigeon pea CcCIPK14‐CcCBL1 pair positively modulates drought tolerance by enhancing flavonoid biosynthesis.

Authors :
Meng, Dong
Dong, Biying
Niu, Lili
Song, Zhihua
Wang, Litao
Amin, Rohul
Cao, Hongyan
Li, Hanghang
Yang, Qing
Fu, Yujie
Source :
Plant Journal. Jun2021, Vol. 106 Issue 5, p1278-1297. 20p.
Publication Year :
2021

Abstract

SUMMARY: Calcineurin B‐like (CBL)‐interacting protein kinases (CIPKs) play a central role in Ca2+ signalling and promote drought tolerance in plants. The CIPK gene family in pigeon pea (Cajanus cajan L.), a major food crop affected by drought, has not previously been characterised. Here, we identified 28 CIPK genes in the pigeon pea genome. Five CcCIPK genes were strongly upregulated in roots upon drought treatment and were selected for further characterisation. Overexpression of CcCIPK13 and CcCIPK14 increased survival rates by two‐ to three‐fold relative to controls after 14 days of drought. Furthermore, the three major flavonoids, genistin, genistein and apigenin, were significantly upregulated in the same transgenic plants. Using CcCIPK14 as bait, we performed a yeast two‐hybrid screen and identified six interactors, including CcCBL1. CcCIPK14 exhibited autophosphorylation and phosphorylation of CcCBL1 in vitro. CcCBL1‐overexpressed plants displayed higher survival rates upon drought stress as well as higher expression of flavonoid biosynthetic genes and flavonoid content. CcCIPK14‐overexpressed plants in which CcCBL1 transcript levels were reduced by RNA interference had lower survival rates, which indicated CcCBL1 in the same pathway as CcCIPK14. Together, our results demonstrate a role for the CcCIPK14‐CcCBL1 complex in drought stress tolerance through the regulation of flavonoid biosynthesis in pigeon pea. Significance Statement: This study systematically elucidates the mechanism by which the CIPK‐CBL complex regulates flavonoid accumulation and drought resistance in pigeon pea, which lays a foundation for in‐depth exploration of relevant molecular mechanisms in plants. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09607412
Volume :
106
Issue :
5
Database :
Academic Search Index
Journal :
Plant Journal
Publication Type :
Academic Journal
Accession number :
151251179
Full Text :
https://doi.org/10.1111/tpj.15234