Back to Search
Start Over
On Estimation of Three-Component Mixture of Distributions via Bayesian and Classical Approaches.
- Source :
-
Mathematical Problems in Engineering . 7/1/2021, p1-19. 19p. - Publication Year :
- 2021
-
Abstract
- In this study, we model a heterogeneous population assuming the three-component mixture of the Pareto distributions assuming type I censored data. In particular, we study some statistical properties (such as various entropies, different inequality indices, and order statistics) of the three-component mixture distribution. The ML estimation and the Bayesian estimation of the mixture parameters have been performed in this study. For the ML estimation, we used the Newton Raphson method. To derive the posterior distributions, different noninformative priors are assumed to derive the Bayes estimators. Furthermore, we also discussed the Bayesian predictive intervals. We presented a detailed simulation study to compare the ML estimates and Bayes estimates. Moreover, we evaluated the performance of different estimates assuming various sample sizes, mixing weights and test termination times (a fixed point of time after which all other tests are dismissed). The real-life data application is also a part of this study. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 1024123X
- Database :
- Academic Search Index
- Journal :
- Mathematical Problems in Engineering
- Publication Type :
- Academic Journal
- Accession number :
- 151176097
- Full Text :
- https://doi.org/10.1155/2021/9944008