Back to Search Start Over

Three Complete Mitochondrial Genomes of Erotylidae (Coleoptera: Cucujoidea) with Higher Phylogenetic Analysis.

Authors :
Liu, Jing
Wang, Yuyu
Zhang, Ruyue
Shi, Chengmin
Lu, Weicheng
Li, Jing
Bai, Ming
Source :
Insects (2075-4450). Jun2021, Vol. 12 Issue 6, p524-524. 1p.
Publication Year :
2021

Abstract

Simple Summary: Erotylid beetles are phytophagous and mycophagous. Phylogenetic studies on this family were mainly based on morphological characters or several gene fragments. Research on the mitochondrial genome of Erotylidae is rare. Therefore, we sequenced and analyzed three complete mt genomes of Erotylinae with a comparative mt genomic analysis of Erotylinae and Languriinae for the first time to reveal mitochondrial genome characterizations and reconstruct phylogenetic relationships of this group. The comparative analyses showed the mt genome characterizations of Erotylinae are similar to Languriinae. These results provided a comprehensive framework and worthy information for the future research of this family. The family Erotylidae belongs to the superfamily Cucujoidea, which are phytophagous and mycophagous. So far, only two representative complete mitochondrial (mt) genomes of Erotylidae have been sequenced. Mitochondrial genomes of Tritoma metasobrina, Neotriplax arisana, and Episcapha opaca, which all belong to the subfamily Erotylinae, were sequenced using next-generation sequencing technology to better understand the diversity of mt genomes of Erotylidae. A comparative mt genomic analysis was conducted on the three sequenced representatives of Erotylinae and Languriinae sp. (Languriinae). The size of the complete mt genome of the 4 species ranged from 15,581 bp to 16,502 bp in length, including 37 genes (13 protein-coding genes, 22 transfer RNAs, and 2 ribosomal RNAs) and the control region. The arrangements of their mt genomes are highly consistent with other Coleoptera species. The start codons of two PCGs (ND1 and ND5) and the stop codons of one PCG (ATP8) were illustrated differences between Languriinae sp. and the other three species. All tRNAs of these 4 species exhibited cloverleaf secondary structures except that the dihydorouridine (DHU) arm of tRNASer(AGN) was absent. The phylogenetic analyses using both Bayesian inference (BI) and maximum likelihood (ML) methods all supported that Erotylidae as monophyletic. Erotylinae was monophyletic being the sister group to Xenocelinae. Languriinae was closely related to 'Erotylinae-Xenocelinae'. Our results recovered Languriinae nested within Erotylidae. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20754450
Volume :
12
Issue :
6
Database :
Academic Search Index
Journal :
Insects (2075-4450)
Publication Type :
Academic Journal
Accession number :
151111098
Full Text :
https://doi.org/10.3390/insects12060524