Back to Search Start Over

Artemisinin Protects Porcine Mammary Epithelial Cells against Lipopolysaccharide-Induced Inflammatory Injury by Regulating the NF-κB and MAPK Signaling Pathways.

Authors :
Zhang, Wenfei
Xiong, Liang
Chen, Jiaming
Tian, Zhezhe
Liu, Jiaxin
Chen, Fang
Ren, Man
Guan, Wutai
Zhang, Shihai
Source :
Animals (2076-2615). Jun2021, Vol. 11 Issue 6, p1528-1528. 1p.
Publication Year :
2021

Abstract

Simple Summary: Sow mastitis is a serious breast disease that can cause severe inflammation, agalaxia and even lead to death of piglets. Porcine mammary epithelial cells (pMECs) are the main cell types that affect sow milk secretion, therefore, when swine mastitis occurs, the inflammatory response of pMECs directly affects the mammary gland health and sow's lactation ability. Promoting the health of mammary gland epithelial cells is an important method for treating mastitis. Thus, in the current study, we investigated the effects of artemisinin on the inflammatory response of pMECs induced by lipopolysaccharide (LPS), and proposed a potential anti-inflammatory mechanism. We confirmed that artemisinin can reduce the inflammatory damage of pMECs induced by LPS by inhibiting MAPK and NF-κB signaling pathways. Pretreatment of pMECs with artemisinin showed enhanced anti-inflammatory activity against LPS-induced inflammation. Artemisinin could be a useful, safe and natural anti-inflammatory feed additive to prevent sow mastitis. Artemisinin performs a variety of biological functions, such as anti-cancer, anti-inflammatory, anti-viral, and anti-oxidant effects. However, the effects of artemisinin on sow mastitis have not been studied. The results of the current study showed that mRNA expression abundance and content of the inflammatory factors interleukin-1β (IL-1β), tumor necrosis factor α (TNF-α), and interleukin-6 (IL-6) were significantly increased when using 50 μg/mL LPS to stimulate pMECs for 24 h (p < 0.05). Pretreatment with 20 μM artemisinin weakened LPS-induced inflammatory damage in pMECs and decreased mRNA expression abundance and the content of inflammatory factors (IL-1β, IL-6, and TNF-α) in pMECs (p < 0.05). Mechanistically, artemisinin inhibited LPS-induced activation of the mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) signaling pathways. In summary, the pretreatment of pMECs with artemisinin showed enhanced anti-inflammatory activity against LPS-induced inflammation. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20762615
Volume :
11
Issue :
6
Database :
Academic Search Index
Journal :
Animals (2076-2615)
Publication Type :
Academic Journal
Accession number :
151084963
Full Text :
https://doi.org/10.3390/ani11061528