Back to Search Start Over

Structural, optical, cytotoxicity, and antimicrobial properties of MgO, ZnO and MgO/ZnO nanocomposite for biomedical applications.

Authors :
Nigam, Abhishek
Saini, Sheetal
Rai, Ambak Kumar
Pawar, S.J.
Source :
Ceramics International. Jul2021, Vol. 47 Issue 14, p19515-19525. 11p.
Publication Year :
2021

Abstract

In this study, MgO nanoparticles were successfully fabricated and incubated inside ZnO NPs to form MgO/ZnO nanocomposite for biomedical applications. The x-ray diffraction analysis of MgO, ZnO, and MgO/ZnO has shown the single-phase x-ray diffraction patterns through X'pert High score. The crystallite sizes were calculated as 18 nm, 42 nm, and 53 nm, respectively. The average particle size of MgO, ZnO, and MgO/ZnO nanopowders depicted from secondary electron images of field emission electron microscopy were 56 nm, 400 nm, and 450 nm, respectively. The presence of MgO NPs inside ZnO NPs was confirmed by transmission electron microscopy. The elemental dispersive spectroscopy of MgO, given the peaks of oxygen and magnesium, also showed only zinc and oxygen peaks in ZnO, which confirms no other impurities in MgO and ZnO powders. The elemental analysis of MgO/ZnO nanocomposite showed the peaks of Zinc and Oxygen, along with a tiny peak of Mg. The photoluminescence and UV–vis spectroscopy revealed the absorbance fluorescence limit of the nanomaterials. Fourier transform infrared spectroscopy confirmed the several groups present in the nanocomposite. The biocompatibility of MgO, ZnO, and MgO/ZnO was observed with human peripheral blood mononuclear cells. The cytotoxicity studies were also performed against human cancer (liver and breast) cell lines. The MgO, ZnO, and MgO/ZnO exhibited the antimicrobial properties against Escherichia coli and Staphylococcus aureus. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
02728842
Volume :
47
Issue :
14
Database :
Academic Search Index
Journal :
Ceramics International
Publication Type :
Academic Journal
Accession number :
150931043
Full Text :
https://doi.org/10.1016/j.ceramint.2021.03.289