Back to Search Start Over

Seasonal-to-decadal scale variability in primary production and particulate matter export at Station ALOHA.

Authors :
Karl, David M.
Letelier, Ricardo M.
Bidigare, Robert R.
Björkman, Karin M.
Church, Matthew J.
Dore, John E.
White, Angelicque E.
Source :
Progress in Oceanography. Jul2021, Vol. 195, pN.PAG-N.PAG. 1p.
Publication Year :
2021

Abstract

• Primary production was time variable, with a 30-yr mean of 536.8 mg C m−2 d−1. • Primary production increased at a rate of 4 (mg C m−2 d−1) yr−1 from 1989–2018. • Export at 150 m averaged 27.9 mg C m−2 d−1 and 4.2 mg N m−2 d−1, with a PC:PN ratio of 7.99. • The export ratio was low (<0.06), and decreased over the 30-year period. • Several hypotheses are presented and discussed. Station ALOHA (A Long-term Oligotrophic Habitat Assessment) was established in the North Pacific Subtropical Gyre (22°45′N, 158°W) as an oligotrophic ocean benchmark to improve our understanding of processes that govern the fluxes of carbon (C) into and from the surface ocean. At approximately monthly intervals, measurements of the primary production of particulate C (PC) using the 14C method, and the export of PC and particulate nitrogen (PN) using surface-tethered sediment traps deployed at 150 m have been made along with a host of complementary physical, biological, and biogeochemical measurements. Euphotic zone depth-integrated (0–200 m) primary production ranged from 220.2 (standard deviation, SD, 10.8) mg C m−2 d−1 in Feb 2018 to 1136.5 (SD = 17.1) mg C m−2 d−1 in Jun 2000, with a 30-yr (1989–2018) mean of 536.8 (SD = 135.0) mg C m−2 d−1 (n = 271). Although the monthly primary production climatology was fairly well constrained, we observed substantial sub-decadal variability and a significant 0–125 m depth-integrated increasing trend of 4.0 (p < 0.01; 95% confidence interval, CI, 2.1–5.9) (mg C m−2 d−1) yr−1 since 1989, displaying a large relative increase of 37% (CI = 18–55%) in the lower portion (75–125 m) of the euphotic zone. Chlorophyll (Chl) a and suspended PC and PN concentrations also displayed significant (p < 0.01) increases in the 75–125 m region of the euphotic zone. PC export at 150 m exhibited both short-term (monthly) and longer-scale variability with a 30-yr mean of 27.9 (SD = 9.7, n = 265) mg C m−2 d−1. PC and PN export exhibited extended, multi-year periods of significantly lower or higher values compared to the 30-yr mean. These multi-year periods of anomalously low and high particle export, in the absence of contemporaneous variations in primary production, probably reflect periodic changes in remineralization efficiencies. The PC export ratio (e-ratio; PC export at 150 m ÷ 0–150 m depth-integrated 14C-based primary production) was low, with a 30-yr mean of 0.054 (SD = 0.021, n = 248), and exhibited a significant (p < 0.01) long-term decreasing trend over the 30-yr observation period. The 30-yr long-term increases in primary production (~37%), Chl a , and suspended PC and PN concentrations (~17%, 8%, and 8%, respectively) in the 75–125 m portion of the water column are hypothesized to result from an enhanced supply of nutrients to the lower portion of the water column over the past three decades. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00796611
Volume :
195
Database :
Academic Search Index
Journal :
Progress in Oceanography
Publication Type :
Academic Journal
Accession number :
150696050
Full Text :
https://doi.org/10.1016/j.pocean.2021.102563