Back to Search
Start Over
3D architecture and structural flexibility revealed in the subfamily of large glutamate dehydrogenases by a mycobacterial enzyme.
- Source :
-
Communications Biology . 6/3/2021, Vol. 4 Issue 1, p1-8. 8p. - Publication Year :
- 2021
-
Abstract
- Glutamate dehydrogenases (GDHs) are widespread metabolic enzymes that play key roles in nitrogen homeostasis. Large glutamate dehydrogenases composed of 180 kDa subunits (L-GDHs180) contain long N- and C-terminal segments flanking the catalytic core. Despite the relevance of L-GDHs180 in bacterial physiology, the lack of structural data for these enzymes has limited the progress of functional studies. Here we show that the mycobacterial L-GDH180 (mL-GDH180) adopts a quaternary structure that is radically different from that of related low molecular weight enzymes. Intersubunit contacts in mL-GDH180 involve a C-terminal domain that we propose as a new fold and a flexible N-terminal segment comprising ACT-like and PAS-type domains that could act as metabolic sensors for allosteric regulation. These findings uncover unique aspects of the structure-function relationship in the subfamily of L-GDHs. Lázaro et. al. report the first 3D structure of a large glutamate dehydrogenase (L-GDH), the one corresponding to the Mycobacterium smegmatis enzyme composed of 180 kDa subunits (mL-GDH180), obtained by X-ray crystallography and cryo-electron microscopy. This structure reveals that mL-GDH180 assembles as tetramers with the N- and C-terminal domains being involved in inter-subunit contacts and unveils unique features of the subfamily of L-GDHs. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 23993642
- Volume :
- 4
- Issue :
- 1
- Database :
- Academic Search Index
- Journal :
- Communications Biology
- Publication Type :
- Academic Journal
- Accession number :
- 150669886
- Full Text :
- https://doi.org/10.1038/s42003-021-02222-x