Back to Search Start Over

Experimental Study of a Thermoelectric Air Duct Dehumidification System for Tropical Climate.

Authors :
Irshad, Kashif
Almalawi, Abdulmohsen
Habib, Khairul
Zahir, Md. Hasan
Ali, Amjad
Islam, Saiful
Saha, Bidyut Baran
Source :
Heat Transfer Engineering. 2021, Vol. 42 Issue 13/14, p1159-1171. 13p.
Publication Year :
2021

Abstract

Water scarcity is the biggest survival challenge for the current generation, and atmospheric water condensation can be a solution. This paper presents the results of a numerical and experimental evaluation of a novel thermoelectric air duct dehumidifier system (TE-ADD) installed on a test chamber. The subject system, made of twenty-four thermoelectric modules along with heat sinks and fans, was used to produce freshwater by extracting moisture from ambient air. The performance of the system was evaluated as a function of the input power and the airflow rate. The results show that the water condensate production increases and the optimal value is achieved for an input power to the TE-ADD system of 6 A at 5 V. A further increase of the input power adversely affects the performance of the system. The condensate production also depends on the flow rate of the air. The optimal flow rate of air at an input current of 5 A and 6 A is 0.011 kg/s. Thus, this system solves two critical environmental issues, i.e., decrease of the thermal load and freshwater production, simultaneously. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01457632
Volume :
42
Issue :
13/14
Database :
Academic Search Index
Journal :
Heat Transfer Engineering
Publication Type :
Academic Journal
Accession number :
150389531
Full Text :
https://doi.org/10.1080/01457632.2020.1777008