Back to Search Start Over

Multitask fMRI and machine learning approach improve prediction of differential brain activity pattern in patients with insomnia disorder.

Authors :
Lee, Mi Hyun
Kim, Nambeom
Yoo, Jaeeun
Kim, Hang-Keun
Son, Young-Don
Kim, Young-Bo
Oh, Seong Min
Kim, Soohyun
Lee, Hayoung
Jeon, Jeong Eun
Lee, Yu Jin
Source :
Scientific Reports. 4/30/2021, Vol. 11 Issue 1, p1-13. 13p.
Publication Year :
2021

Abstract

We investigated the differential spatial covariance pattern of blood oxygen level-dependent (BOLD) responses to single-task and multitask functional magnetic resonance imaging (fMRI) between patients with psychophysiological insomnia (PI) and healthy controls (HCs), and evaluated features generated by principal component analysis (PCA) for discrimination of PI from HC, compared to features generated from BOLD responses to single-task fMRI using machine learning methods. In 19 patients with PI and 21 HCs, the mean beta value for each region of interest (ROIbval) was calculated with three contrast images (i.e., sleep-related picture, sleep-related sound, and Stroop stimuli). We performed discrimination analysis and compared with features generated from BOLD responses to single-task fMRI. We applied support vector machine analysis with a least absolute shrinkage and selection operator to evaluate five performance metrics: accuracy, recall, precision, specificity, and F2. Principal component features showed the best classification performance in all aspects of metrics compared to BOLD response to single-task fMRI. Bilateral inferior frontal gyrus (orbital), right calcarine cortex, right lingual gyrus, left inferior occipital gyrus, and left inferior temporal gyrus were identified as the most salient areas by feature selection. Our approach showed better performance in discriminating patients with PI from HCs, compared to single-task fMRI. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20452322
Volume :
11
Issue :
1
Database :
Academic Search Index
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
150107354
Full Text :
https://doi.org/10.1038/s41598-021-88845-w