Back to Search Start Over

The SuperCam Instrument Suite on the Mars 2020 Rover: Science Objectives and Mast-Unit Description.

Authors :
Maurice, S.
Wiens, R. C.
Bernardi, P.
Caïs, P.
Robinson, S.
Nelson, T.
Gasnault, O.
Reess, J.-M.
Deleuze, M.
Rull, F.
Manrique, J.-A.
Abbaki, S.
Anderson, R. B.
André, Y.
Angel, S. M.
Arana, G.
Battault, T.
Beck, P.
Benzerara, K.
Bernard, S.
Source :
Space Science Reviews. Apr2021, Vol. 217 Issue 3, p1-108. 108p.
Publication Year :
2021

Abstract

On the NASA 2020 rover mission to Jezero crater, the remote determination of the texture, mineralogy and chemistry of rocks is essential to quickly and thoroughly characterize an area and to optimize the selection of samples for return to Earth. As part of the Perseverance payload, SuperCam is a suite of five techniques that provide critical and complementary observations via Laser-Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman and Luminescence (TRR/L), visible and near-infrared spectroscopy (VISIR), high-resolution color imaging (RMI), and acoustic recording (MIC). SuperCam operates at remote distances, primarily 2–7 m, while providing data at sub-mm to mm scales. We report on SuperCam's science objectives in the context of the Mars 2020 mission goals and ways the different techniques can address these questions. The instrument is made up of three separate subsystems: the Mast Unit is designed and built in France; the Body Unit is provided by the United States; the calibration target holder is contributed by Spain, and the targets themselves by the entire science team. This publication focuses on the design, development, and tests of the Mast Unit; companion papers describe the other units. The goal of this work is to provide an understanding of the technical choices made, the constraints that were imposed, and ultimately the validated performance of the flight model as it leaves Earth, and it will serve as the foundation for Mars operations and future processing of the data. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00386308
Volume :
217
Issue :
3
Database :
Academic Search Index
Journal :
Space Science Reviews
Publication Type :
Academic Journal
Accession number :
150089526
Full Text :
https://doi.org/10.1007/s11214-021-00807-w