Back to Search Start Over

The Behavior of Gold Metallized AlN/Si- and AlN/Glass-Based SAW Structures as Temperature Sensors.

Authors :
Nicoloiu, Alexandra
Stan, George E.
Nastase, Claudia
Boldeiu, George
Besleaga, Cristina
Dinescu, Adrian
Muller, Alexandru
Source :
IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control. May2021, Vol. 68 Issue 5, p1938-1948. 11p.
Publication Year :
2021

Abstract

Thin AlN piezoelectric layers have been deposited on high resistivity Si and glass substrates by reactive RF magnetron sputtering, in order to manufacture one-port gigahertz operating surface acoustic wave (SAW)-type resonators to be used as temperature sensors. The growth morphology surface topography, crystallographic structure, and crystalline quality of the AlN layers have been analyzed. Advanced nanolithographic techniques have been used to manufacture structures having interdigitated transducers with fingers and finger interdigit spacing width in the range of 250ā€“170 nm. High resonance frequency ensures the increase of the sensitivity, but also of its normalized value, the temperature coefficient of frequency (TCF). The resonance frequency shift versus temperature has been measured in the āˆ’267°Cāˆ’+150°C temperature range, using a cryostat setup adapted for on wafer microwave measurements up to 50 GHz. The sensitivity and the TCF were determined in the 25 °Cā€“150 °C temperature range. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
08853010
Volume :
68
Issue :
5
Database :
Academic Search Index
Journal :
IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control
Publication Type :
Academic Journal
Accession number :
150071215
Full Text :
https://doi.org/10.1109/TUFFC.2020.3037789