Back to Search
Start Over
Manipulation of hot electron flow on plasmonic nanodiodes fabricated by nanosphere lithography.
- Source :
-
Nanotechnology . 5/28/2021, Vol. 32 Issue 22, p1-8. 8p. - Publication Year :
- 2021
-
Abstract
- Energy conversion to generate hot electrons through the excitation of localized surface plasmon resonance (LSPR) in metallic nanostructures is an emerging strategy in photovoltaics and photocatalytic devices. Important factors for surface plasmon and hot electron generation are the size, shape, and materials of plasmonic metal nanostructures, which affect LSPR excitation, absorbance, and hot electron collection. Here, we fabricated the ordered structure of metal-semiconductor plasmonic nanodiodes using nanosphere lithography and reactive ion etching. Two types of hole-shaped plasmonic nanostructures with the hole diameter of 280 and 115 nm were fabricated on Au/TiO2 Schottky diodes. We show that hot electron flow can be manipulated by changing the size of plasmonic nanostructures on the Schottky diode. We show that the short-circuit photocurrent changes and the incident photon-to-electron conversion efficiency results exhibit the peak shift depending on the structures. These phenomena are explicitly observed with finite difference time domain simulations. The capability of tuning the morphology of plasmonic nanostructure on the Schottky diode can give rise to new possibilities in controlling hot electron generation and developing novel hot-electron-based energy conversion devices. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 09574484
- Volume :
- 32
- Issue :
- 22
- Database :
- Academic Search Index
- Journal :
- Nanotechnology
- Publication Type :
- Academic Journal
- Accession number :
- 149888772
- Full Text :
- https://doi.org/10.1088/1361-6528/abe827