Back to Search
Start Over
Some mean value results related to Hardy's function.
- Source :
-
Research in Number Theory . 4/16/2021, Vol. 7 Issue 2, p1-16. 16p. - Publication Year :
- 2021
-
Abstract
- Let ζ (s) and Z(t) be the Riemann zeta function and Hardy's function respectively. We show asymptotic formulas for ∫ 0 T Z (t) ζ (1 / 2 + i t) d t and ∫ 0 T Z 2 (t) ζ (1 / 2 + i t) d t . Furthermore we derive an upper bound for ∫ 0 T Z 3 (t) χ α (1 / 2 + i t) d t for - 1 / 2 < α < 1 / 2 , where χ (s) is the function which appears in the functional equation of the Riemann zeta function: ζ (s) = χ (s) ζ (1 - s) . [ABSTRACT FROM AUTHOR]
- Subjects :
- *FUNCTIONAL equations
*ZETA functions
*MEAN value theorems
*EXPONENTIAL sums
Subjects
Details
- Language :
- English
- ISSN :
- 25220160
- Volume :
- 7
- Issue :
- 2
- Database :
- Academic Search Index
- Journal :
- Research in Number Theory
- Publication Type :
- Academic Journal
- Accession number :
- 149866735
- Full Text :
- https://doi.org/10.1007/s40993-021-00255-z