Back to Search Start Over

A Detection of Convectively Induced Turbulence Using in Situ Aircraft and Radar Spectral Width Data.

Authors :
Kim, Jung-Hoon
Park, Ja-Rin
Kim, Soo-Hyun
Kim, Jeonghoe
Lee, Eunjeong
Baek, SeungWoo
Lee, Gyuwon
Kumar, Vinay
Source :
Remote Sensing. 2/15/2021, Vol. 13 Issue 4, p726-726. 1p.
Publication Year :
2021

Abstract

A commercial aircraft, departing from Seoul to Jeju Island in South Korea, encountered a convectively induced turbulence (CIT) at about z = 2.2 km near Seoul on 28 October 2018. At this time, the observed radar reflectivity showed that the convective band with cloud tops of z = 6–7 km passed the CIT region with high values of spectral width (SW; larger than 4 m s–1). Using the 1 Hz wind data recorded by the aircraft, we estimated an objective intensity of the CIT as a cube root of eddy dissipation rate (EDR) based on the inertial range technique, which was about 0.33–0.37 m2/3 s−1. Radar-based EDR was also derived by lognormal mapping technique (LMT), showing that the EDR was about 0.3–0.35 m2/3 s−1 near the CIT location, which is consistent with in situ EDR. In addition, a feasibility of the CIT forecast was tested using the weather and research forecast (WRF) model with a 3 km horizontal grid spacing. The model accurately reproduced the convective band passing the CIT event with an hour delay, which allows the use of two methods to calculate EDR: The first is using both the sub-grid and resolved turbulent kinetic energy to infer the EDR; the second is using the LMT for converting absolute vertical velocity (and its combination with the Richardson number) to EDR-scale. As a result, we found that the model-based EDRs were about 0.3–0.4 m2/3 s−1 near the CIT event, which is consistent with the estimated EDRs from both aircraft and radar observations. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20724292
Volume :
13
Issue :
4
Database :
Academic Search Index
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
149772366
Full Text :
https://doi.org/10.3390/rs13040726