Back to Search
Start Over
Development of an in vitro gastro-intestinal pig model to screen potential detoxifying agents for the mycotoxin deoxynivalenol.
- Source :
-
Food Additives & Contaminants. Part A: Chemistry, Analysis, Control, Exposure & Risk Assessment . Mar2021, Vol. 38 Issue 3, p488-500. 13p. 3 Diagrams, 3 Charts, 2 Graphs. - Publication Year :
- 2021
-
Abstract
- Deoxynivalenol (DON) is a type B trichothecene mycotoxin with worldwide high incidence in feed which is produced by Fusarium species. Strategies are needed to eliminate its health risk for livestock and to minimise its economic impact on production. In order to assess the efficacy of potential physical, chemical and biological DON detoxifying agents, a good in vitro model is necessary to perform a fast and high-throughput screening of new compounds before in vivo trials are set up. In this paper, an in vitro model was developed to screen potential commercial products for DON degradation and detoxification. Contaminated feed with potential detoxifying agents are first applied to a simulated gastrointestinal tract (GIT) of a pig, after which detoxification is assessed through a robust, inexpensive and readily applicable Lemna minor L. aquatic plant bioassay which enables evaluation of the residual toxicity of possible metabolites formed by DON detoxifying agents. The GIT simulation enables taking matrix and incubation parameters into account as they can affect the binding, removal or degradation of DON. One product could reduce DON in feed in the GIT model for almost 100% after 6 h. DON metabolites were tentatively identified with LC-MS/MS. This GIT simulation coupled to a detoxification bioassay is a valuable model for in vitro screening and assessing compounds for DON detoxification, and could be expanded towards other mycotoxins. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 19440049
- Volume :
- 38
- Issue :
- 3
- Database :
- Academic Search Index
- Journal :
- Food Additives & Contaminants. Part A: Chemistry, Analysis, Control, Exposure & Risk Assessment
- Publication Type :
- Academic Journal
- Accession number :
- 149381093
- Full Text :
- https://doi.org/10.1080/19440049.2020.1865577