Back to Search Start Over

Spatiotemporal Estimation of the Olive and Vine Cultivations' Growing Degree Days in the Balkans Region.

Authors :
Charalampopoulos, Ioannis
Polychroni, Iliana
Psomiadis, Emmanouil
Nastos, Panagiotis
Bellocchi, Gianni
Source :
Atmosphere. Feb2021, Vol. 12 Issue 2, p148. 1p.
Publication Year :
2021

Abstract

Olive and vine cultivations are two of the most important crops in Europe, yielding high quality and value food products. The climate change over the Balkans may elevate the agroecological pressure for the established crops and shift their cultivations areas. One of the widely-used agroclimatic indices is the growing degree days (GDD) which accumulates the necessary thermal units for the selected crops. Despite the advances on the agroclimatic research, there are few available methods for spatiotemporal estimation of this useful index. So, this research is focused on the construction of simple and reliable equations for the calculation and projection of olive and vine cultivations' GDD over the Balkans. The models' input parameters are the time, the altitude, the distance from the seashore, and the latitude. Its assembly is made by the extracted spatial data, combined with the Agri4Cast dataset for the period of 1980 to 2018 incorporating the regional climate change trend. The results indicate that the most influential parameter is the time, followed by the latitude, for both cultivations. According to the projections, as quantified by GDD, a vast sprawl of olive and vine cultivation areas will have been formed to the northern parts of the studied area. To be more precise, the viticulture could expand spatially by 28.8% (of the Balkans area) by 2040, and by 15.1% to 2060, when the olive cultivations' area could sprawl 23.9% by 2040 and 20.3% by 2060. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20734433
Volume :
12
Issue :
2
Database :
Academic Search Index
Journal :
Atmosphere
Publication Type :
Academic Journal
Accession number :
149095212
Full Text :
https://doi.org/10.3390/atmos12020148