Back to Search Start Over

Structure of membrane diacylglycerol kinase in lipid bilayers.

Authors :
Li, Jianping
Shen, Yang
Chen, Yanke
Zhang, Zhengfeng
Ma, Shaojie
Wan, Qianfen
Tong, Qiong
Glaubitz, Clemens
Liu, Maili
Yang, Jun
Source :
Communications Biology. 3/5/2021, Vol. 4 Issue 1, p1-13. 13p.
Publication Year :
2021

Abstract

Diacylglycerol kinase (DgkA) is a small integral membrane protein, responsible for the ATP-dependent phosphorylation of diacylglycerol to phosphatidic acid. Its structures reported in previous studies, determined in detergent micelles by solution NMR and in monoolein cubic phase by X-ray crystallography, differ significantly. These differences point to the need to validate these detergent-based structures in phospholipid bilayers. Here, we present a well-defined homo-trimeric structure of DgkA in phospholipid bilayers determined by magic angle spinning solid-state NMR (ssNMR) spectroscopy, using an approach combining intra-, inter-molecular paramagnetic relaxation enhancement (PRE)-derived distance restraints and CS-Rosetta calculations. The DgkA structure determined in lipid bilayers is different from the solution NMR structure. In addition, although ssNMR structure of DgkA shows a global folding similar to that determined by X-ray, these two structures differ in monomeric symmetry and dynamics. A comparative analysis of DgkA structures determined in three different detergent/lipid environments provides a meaningful demonstration of the influence of membrane mimetic environments on the structure and dynamics of membrane proteins. Jianping Li et al. present the homo-trimeric structure of the small integral membrane protein diacylglycerol kinase (DgkA) in phospholipid bilayers determined by magic angle spinning solid-state NMR spectroscopy. They compare the structure with structures solved by solution NMR and X-ray crystallography and provide insights into the influence of membrane mimetic environments on membrane proteins. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
23993642
Volume :
4
Issue :
1
Database :
Academic Search Index
Journal :
Communications Biology
Publication Type :
Academic Journal
Accession number :
149092602
Full Text :
https://doi.org/10.1038/s42003-021-01802-1