Back to Search
Start Over
Sampling initial positions and momenta for nuclear trajectories from quantum mechanical distributions.
- Source :
-
Journal of Chemical Physics . 2/21/2021, Vol. 154 Issue 7, p1-10. 10p. - Publication Year :
- 2021
-
Abstract
- We compare algorithms to sample initial positions and momenta of a molecular system for classical trajectory simulations. We aim at reproducing the phase space quantum distribution for a vibrational eigenstate, as in Wigner theory. Moreover, we address the issue of controlling the total energy and the energy partition among the vibrational modes. In fact, Wigner's energy distributions are very broad, quite at variance with quantum eigenenergies. Many molecular processes depend sharply on the available energy, so a better energy definition is important. Two approaches are introduced and tested: the first consists in constraining the total energy of each trajectory to equal the quantum eigenenergy. The second approach modifies the phase space distribution so as to reduce the deviation of the single mode energies from the correct quantum values. A combination of the two approaches is also presented. [ABSTRACT FROM AUTHOR]
- Subjects :
- *QUANTUM trajectories
*DISTRIBUTION (Probability theory)
*PHASE space
*ALGORITHMS
Subjects
Details
- Language :
- English
- ISSN :
- 00219606
- Volume :
- 154
- Issue :
- 7
- Database :
- Academic Search Index
- Journal :
- Journal of Chemical Physics
- Publication Type :
- Academic Journal
- Accession number :
- 148820129
- Full Text :
- https://doi.org/10.1063/5.0039592